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bstract

This article reviews and analyzes a number of numerical methods to track interfaces in multiphase flows. Several interface tracking methods can
e found in literature: the level-set method, the marker particle method, the front tracking method and the volume of fluid method (VOF) to name
few. The volume of fluid method has an advantage of being conceptually simple, reasonably accurate and phenomena such as interface breakup
nd coalescence are inherently included. Over the years a number of different techniques to implement the VOF method have been devised.

This article gives a basic introduction to the VOF method and focuses on four VOF methods: flux-corrected transport (FCT) by Boris et al. [J.P.
oris, D.L. Book, Flux-corrected transport. I: SHASTA, a fluid transport algorithm that works, J. Comput. Phys. 11 (1973) 38–69], Lagrangian
iecewise linear interface construction (L-PLIC) by van Wachem and Schouten [B.G.M. van Wachem, J.C. Schouten, Experimental validation
f 3-d Lagrangian VOF model: bubble shape and rise velocity, AIChE 48 (12) (2002) 2744–2753], Compressive interface capturing scheme for
rbitrary meshes (CICSAM) by Ubbink [O. Ubbink, Numerical prediction of two fluid systems with sharp interfaces, Ph.D. Thesis, Imperial
ollege of Science, Technology and Medicine, 1997] and inter-gamma scheme by Jasak and Weller [H. Jasak, H.G. Weller, Interface-tracking

apabilities of the InterGamma differencing scheme, Technical Report, Imperial College, University of London, 1995]. A detailed description of
hese schemes is given and implemented into an in-house fully coupled solver. Further, the performance of these schemes is examined employing
number of tests to analyze their strengths and weaknesses. Their advantages and limitations are discussed.
2008 Elsevier B.V. All rights reserved.
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. Introduction

Interfacial multiphase flows are frequently encountered both
n nature and industries. Processes such as extraction, chemi-
al reaction, mass-transfer, separation, etc., involve interfacial
ows. To understand the basic hydrodynamic phenomena asso-
iated with such processes requires a proper and sharp definition
f the interface between two phases. These phenomena include
ubble transport, formation, breakup, coalescence, etc.

A detailed computation of immiscible-fluid and free-surface
ows requires an accurate representation of the interface sep-
rating the two fluids. Immiscible-fluid flows are commonly
ncountered in nature as well as in industries. The applica-
ions include processes involving separation, extraction, mixing

nd chemical reactions. Free-surface flows such as water waves
nd splashing droplets are encountered in nature and industrial
rocesses. These flow problems include phenomena like fluid
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oalescence and breakup which further increases the need for
n accurate and sharp interface definition. A number of tech-
iques to track the interface have been developed in the last few
ecades. The most important techniques are shown in Table 1.
he existing methods for the computation of free surfaces and
uid interfaces can be classified into two groups (Fig. 1): (a) sur-
ace methods (surface fitting) and (b) volume methods (surface
apturing).

.1. Surface methods

With surface methods, the interface is represented by special
arker points. Interpolation is used to approximate the points

etween these points, usually using a piecewise polynomial.
he advantage of this approach is that the interface position

s known throughout the flow field and remains sharp as it is
dvected across the domain. This enables the accurate calcula-

ion of the interface curvature which is needed for the inclusion
f the surface tension force. Limitations arise while simulating
oalescence and breakup of the interface surface, as the parti-
les might tend to either move apart or very close to each other

mailto:vinay@chalmers.se
dx.doi.org/10.1016/j.cej.2007.12.035
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Table 1
Overview of interface tracking techniques

Method Advantages Disadvantages

Front tracking Extremely accurate Mapping of interface mesh onto Eulerian mesh
Robust Dynamic re-meshing required
Accounts for substantial topology changes in interface Merging and breakage of interfaces requires sub-grid model

Level set Conceptually simple Limited accuracy
Easy to implement Loss of mass (volume)

Shock capturing Straightforward implementation Numerically diffusive
Abundance of advection schemes is available Fine grids required

Limited or small discontinuities

Marker particle Extremely accurate Computationally expensive
Robust Re-distribution of marker particles required
Accounts for substantial topology changes in interface

SLIC VOF Conceptually simple Numerically diffusive
Straightforward extension to three dimensions Limited accuracy
Merging and breakage of interfaces occurs automatically

PLIC VOF Relatively simple and accurate Difficult to implement in three dimensions
Merging and breakage of interface occurs automatically Extension to boundary fitted grids very difficult

Compressive VOF Relatively simple and accurate Requires very low Courant numbers else becomes inaccurate or unstable
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Easily adaptable to boundary fitted grids
Merging and breakage of interface occurs automatica

eading to lower resolution of the interface. Several surface
ethods exist, two such methods are explained below:
Front tracking method: In front tracking methods (Unverdi

nd Tryggvason [15]), the interface is tracked explicitly on a
xed Eulerian mesh by marking the interface with a set of
onnected massless marker particles. The local velocities are
sed to advect these massless particles in a Lagrangian man-
er. The method is sensitive to the spacing between the marker
articles, i.e. when the particles are far apart, the interface is
ot well resolved and when they are too close, the curvature
s over-estimated. Therefore it is necessary to add or delete

arker particles dynamically. Also, difficulties arise when mul-
iple interfaces interact with each other as in coalescence and
reakup requiring a proper sub-grid model.

Level-set method: In level-set methods (Osher and Sethian
10]), the interface is defined as a zero level set of a distance
unction from the interface. To distinguish between the two fluids

n either side of the interface a negative sign is attached to the
istance function for one of the fluids. The distance function γ

s a scalar property and is advected with the local fluid velocity

Fig. 1. Different methods representing interface.
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y solving the scalar advection equation:

∂γ

∂t
+ Ui

∂γ

∂xi

= 0 (1)

he level-set methods are conceptually simple and relatively
asy to implement yielding accurate results when the interface is
dvected parallel to one of the co-ordinate axis. However, in flow
elds with appreciable vorticity or in cases where the interface

s significantly deformed, level-set methods suffer from loss of
ass.

.2. Volume methods

In volume methods, the fluids on either side of the interface
re marked by either massless particles or an indicator function.
hus the exact position of the interface is not known explicitly
nd special techniques are needed to reconstruct the well-defined
nterface, which is one of the main drawbacks of this technique.

number of volume methods exist, two such volume methods
re explained here.

Marker particle methods: In the marker and cell (MAC)
ethod of Harlow and Welch [3] marker particles are scattered

nitially to identify each material region in the calculation. These
articles are transported in a Lagrangian manner along with
he materials. Their presence in a computational cell indicates
he presence of the marked material. The material boundary is
econstructed using the marker particle densities in the mixed
ells with marker particles of two or more materials. Marker
article methods are extremely accurate and robust and can be

sed successfully to predict the topology of an interface sub-
ected to considerable shear and vorticity in the fluids sharing
he interface. However, this method is computationally expen-
ive due to the requirement of many particles, especially in
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hree dimensions. Moreover, difficulties arise when the inter-
ace stretches considerably which requires the addition of fresh
arker particles during the flow simulation.
Volume of fluid method (VOF): A scalar indicator function

etween zero and one, known as volume fraction is used to dis-
inguish between two different fluids. In this study four different
olume of fluid schemes are implemented into a fully coupled
n-house finite volume, boundary fitted code. The next section
ives an introduction to the volume of fluid method and the
chemes implemented are explained in detail. Further, the per-
ormance of these schemes is reviewed with the help of various
est cases.

. Volume of fluid method

The volume of fluid method was first proposed by Hirt and
ichols [4]. In the volume of fluid method, the flow equations are
olume averaged directly to obtain single set of equations and
he interface is tracked using a phase indicator function γ (also
nown as color function or volume fraction) which is defined
s:

γ = 1 ⇒ control volume is filled only with phase 1
γ = 0 ⇒ control volume is filled only with phase 2
0 < γ < 1 ⇒ interface present

The flow equations are volume averaged using an averaging
olume smaller than the bubbles/drops used in the simulations.
onsidering only two phases, without mass exchange, and vol-
me averaging the mass and momentum equations, following
hree cases are encountered as shown in Fig. 2:

ase 1: The averaging picks out phase 1.
• Mass conservation

∂〈ρ1〉
∂t

+ ∇ · 〈ρ1u1〉 = 0. (2)

• Momentum balance

∂

∂t
〈ρ1u1〉 + ∇ · 〈ρ1u1u1〉 = ∇ · 〈T 1〉 + 〈ρ1g〉. (3)
ase 2: The averaging picks out phase 2.
• Mass conservation

∂〈ρ2〉
∂t

+ ∇ · 〈ρ2u2〉 = 0. (4)

Fig. 2. Averaging volume compared with the bubble/drop volume.
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• Momentum balance

∂

∂t
〈ρ2u2〉 + ∇ · 〈ρ2u2u2〉 = ∇ · 〈T 2〉 + 〈ρ2g〉. (5)

ase 3: The averaging picks out a piece of the interface and
both the phases.
• Mass conservation

∂

∂t
〈γρ1〉 + ∇ · 〈γρ1u1〉 = 0, (6)

∂

∂t
〈(1 − γ)ρ2〉 + ∇ · 〈(1 − γ)ρ2u2〉 = 0. (7)

• Momentum balances

∂

∂t
〈γρ1u1〉 + ∇ · 〈γρ1u1u1〉

=∇ · 〈γT 1〉 + 〈γρ1g〉+ 1

V

∫
AI

T 1 · nI12 dA, (8)

∂

∂t
〈(1 − γ)ρ2u2〉 + ∇ · 〈(1 − γ)ρ2u2u2〉
= ∇ · 〈(1 − γ)T 2〉 + 〈(1 − γ)ρ2g〉

+ 1

V

∫
AI

T 2 · nI21 dA.

(9)

• Jump condition

1

V

∫
AI

[−T 1 · nI12 − T 2 · nI21

]
dA

= − 1

V

∫
AI

mσ
12 dA. (10)

In order to obtain single set of equations, the following aver-
ged variables need to be introduced:

= 〈γρ1 + (1 − γ)ρ2〉 (11)

= 〈γT 1 + (1 − γ)T 2〉 (12)

sing these new variables and assuming that the velocity of
he two phases is continuous across the interface, the mass and

omentum equations can be written as:

∂ρ

∂t
+ ∇ · (ρu) = 0, (13)

∂

∂t
(ρu) + ∇ · (ρuu) = ∇ · T + ρg + f I . (14)

he last term on the RHS of Eq. (14) represents the surface
ension force.

The scalar γ being the property of the fluid (volume fraction)
ith which it moves, it is evolution is governed by the simple

dvection equation:
∂γ

∂t
+ ∂Uiγ

∂xi

= 0. (15)

ne of the critical issues with the VOF method is the discretiza-
ion of advection term in Eq. (15). Lower order schemes like the
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Fig. 3. One-dimensional mesh arrangement for FCT.

rst order upwind method smear the interface due to numerical
iffusion and higher order schemes are unstable and result in
umerical oscillations. Thus, it is necessary to derive advec-
ion schemes that can keep the interface sharp and produce

onotonic profiles of the color function. Over the years sev-
ral volume advection techniques for finite volume and finite
ifference meshes have been proposed by many researchers:
oh and Woodward’s [9] SLIC (Simple Line Interface Calcula-

ion), Hirt and Nichols’ [4] Donor–Acceptor Scheme, Youngs’
ethod [17], flux-corrected transport (FCT) by Boris et al.

1], Ubbink’s [14] Compressive interface capturing scheme for
rbitrary meshes (CICSAM), etc. This paper focuses on the
ollowing volume tracking methods:

Flux-corrected transport method by Boris et al. [1],
Lagrangian-PLIC method by van Wachem and Schouten [16],
CICSAM by Ubbink [14] and
Inter-gamma compressive scheme by Jasak and Weller [5].

In the following sections, these methods are explained in
etail.

.1. Flux-corrected transport

FCT is based on the idea that a suitable combination of up
nd downwind fluxes can be formulated that eliminates both the
iffusiveness of the upwind scheme and the instability of the
ownwind scheme. The idea of adjusting fluxes calculated with
higher order (non-monotonic) advection scheme to improve

he monotonicity of the final result was introduced by Boris et
l. [1] and was generalized and extended to multi-dimensions
y Zalesak [18].

The method involves several stages of calculation. First, an
ntermediate value of γ , namely γ∗, is determined using a lower
rder monotonic (and hence diffusive) advection scheme. The
cheme for solving the one-dimensional version of Eq. (15) (for
esh cell i as shown in Fig. 3) is symbolically written as

∗
i = γn

i − 1

δx
(FL

(i+1/2) − FL
(i−1/2)), (16)

here FL represents the lower order flux. The flux Ff at the
ace f is defined as:

= U δtγ (17)
f f f

urther an anti-diffusive flux (FA) is defined that attempts to
orrect the numerical diffusion resulting from the lower order
cheme. An estimate of the anti-diffusive fluxes is given by the

t
l

F

ig. 4. One-dimensional view of the transported and diffused profile of γ∗
i ,

howing the two anti-diffusive fluxes.

ifference between the higher and lower order flux approxima-
ions:

A
(i+1/2) = FH

(i+1/2) − FL
(i+1/2). (18)

pplication of the entire anti-diffusive flux results in the unstable
igher order flux being used, thus correction factors (limiters)
are introduced that limit the anti-diffusive fluxes. Detailed

rocedure used to limit the fluxes as described by Zalesak [18]
s presented in the next section. The final step of flux-corrected
ransport algorithm is to apply the anti-diffusive fluxes with the
orrection factors and obtain the values of the color function at
he new time:

n+1
i = γ∗

i −
(
q(i+1/2)F

A
(i+1/2) − q(i−1/2)F

A
(i−1/2)

)
δx

. (19)

he above FCT algorithm is extended to multi-dimensions by
irection-split implementation. Rudman [12] has shown that the
irection-split FCT gives superior results compared to multi-
imensional extension proposed by Ref. [18]. Unfortunately, the
ethod does not work well for flows with vorticity, the method

ecomes quite diffusive in such cases.

.1.1. Limiter estimation
As described in the previous section, using the entire anti-

iffusive flux results in numerical oscillations, thus limiters q
hould be introduced that limit the anti-diffusive fluxes. This
ection presents Zalesak’s [18] flux limiting algorithm in one
imension. The limiters are calculated to ensure that no new
xtrema are introduced into the solution after application of
he anti-diffusive fluxes. The minimum and maximum values
llowed for a mesh cell i are based on γn and γ∗ in cell i and its
wo neighbors, i − 1 and i + 1. Referring to Fig. 4, one seeks to

imit the anti-diffusive flux FA

(i+1/2) such that

C
(i+1/2) = q(i+1/2)F

A
(i+1/2), 0 ≤ q(i+1/2) ≤ 1 (20)
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nd such that FC
(i+1/2) acting in concert with FC

(i−1/2) will not
llow

n+1
i = γ∗

i − (FC
(i+1/2) − FC

(i−1/2))

δx
(21)

o exceed some maximum value γmax
i nor fall below some min-

mum value γmin
i . Defining three new quantities:

P+
i = the sum of all anti-diffusive fluxes into grid point i

= max(0, FA
(i−1/2)) − min(0, FA

(i+1/2))
(22)

+
i = (γmax

i − γ∗
i

)
�xi (23)

+
i =

⎧⎪⎨
⎪⎩

min(1,
Q+

i

P+
i

) if P+
i > 0

0 if P+
i = 0

(24)

ssuming that γmax
i ≥ γ∗

i , all three of the above quantities are
ositive and R+

i represents the least upper bound on the fraction
hich must multiply all anti-diffusive fluxes into grid point i to
uarantee no overshoot at grid point i. Similarly defining three
orresponding quantities:

P−
i =the sum of all anti-diffusive fluxes away

from grid point i

= max(0, FA
(i+1/2))− min(0, FA

(i−1/2))

(25)

−
i = (γ∗

i − γmin
i ) �xi (26)

−
i =

⎧⎪⎨
⎪⎩

min

(
1,

Q−
i

P−
i

)
if P−

i > 0

0 if P−
i = 0

(27)

gain assuming that γmin
i ≤ γ∗

i , R−
i represents the least upper

ound on the fraction which must multiply all anti-diffusive
uxes away from grid point i to guarantee no undershoot at grid
oint i.

All anti-diffusive fluxes are directed away from one grid point
nd into an adjacent one. Limiting will therefore take place with
espect to undershoots for the former and with respect to over-
hoots for the latter. A guarantee that neither event comes to pass
emands taking a minimum:

(i+1/2) =
{

min(R+
(i+1), R

−
i ) ifFA

(i+1/2) ≥ 0

min(R+
i , R−

i+1) ifFA
(i+1/2) < 0

(28)

inally, to determine γmax
i and γmin

i present in Eqs. (23) and
26), Zalesak [18] shows that the following choice performed
etter:

γa
i = max(γn

i , γ∗
i )

γmax
i = max(γa

i−1, γ
a
i , γa

i+1)
(29)

γb
i = min(γn

i , γ∗
i )
γmin
i = min(γb

i−1, γ
b
i , γb

i+1).
(30)

his choice allows one to look back to the previous time step
or upper and lower bounds on γn+1

i .

t
v
α

l

Fig. 5. Volume of the computational cell cut by interface ABC.

.2. Lagrangian PLIC

This Lagrangian volume of fluid method based on piecewise
inear interface construction (PLIC) is proposed by van Wachem
nd Schouten [16]. Fig. 5 shows a computational cell with an
nterface separating the two fluids, i.e. phases 1 and 2. The inter-
ace itself is defined by the local volume fraction of one of the
wo fluids and the estimated normal n. This interface between
he two phases is propagated by the local fluid flow along the
nterface. This method involves two steps:

Reconstruction of the interface: As shown in Fig. 5 e1, e2 and
3 are the three Cartesian directions and c1, c2 and c3 are the
engths of the orthogonal computational grid cell. The general
quation for a plane in three dimensions is given by the equation:

1x1 + n2x2 + n3x3 = α, (31)

here α is the shortest distance from the plane to the origin, ni

re the normals to the surface, and xi is the coordinate in the
irection of ei. Now, the volume of the large tetrahedron below
he interface ABC (Fig. 5) is given by

α3

6n1n2n3
(32)

To obtain only the volume lying under the interface within
he computational cell one needs to subtract the three volumes
f tetrahedra that protrude outside of the original tetrahedron.
he magnitudes of these volumes is (1 − nixi/α)3, if α > nixi.
owever, this results in the volume of the small tetrahedron

n front of the figure being subtracted multiple times, hence
his volume should be added again. The magnitude of this

olume is (1 − nici/α − njcj/α)3, where i 	= j, and only if
> (nici + njcj). Thus, the equation for the total volume

ying under the interface within the computational cell can be
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ritten as

= α3

6n1n2n3

{
1 −

3∑
i=1

H(α − nici)
(

1 − nici

α

)3

+
3∑

i=1

H(α − αmax + nici)
(

1 − αmax

α
+ nici

α

)}
, (33)

here H is the Heaviside step function, and

max = n1c1 + n2c2 + n3c3. (34)

n this problem, we not only need the forward Eq. (33) but also
he inverse, to obtain the value of α with a known volume. Since
q. (33) is monotonic in α, solving α is straightforward, except

n cases for any of the ni being very close to zero. To solve
he inverse problem, Newton–Raphson method is used as the
erivative of Eq. (33) can be determined.

Lagrangian propagation of the interface: The Lagrangian
ropagation of the interface can be best described by how Eq.
31) describing the interface changes due to the movement of
he flow. This results in two contributions:

. Change in the values of α and ni due to the fluid flow and lead
to the movement of the interface within the computational
cell.

. Change in the values of ci due to the movement of the rect-
angular sides of the volume, thus shifting the origin to the
interface.

The first contribution is found by updating Eq. (31) with the
ew values of α and ni which are in turn found by integrating
he local fluid velocity over the interface. In one direction, this
ocal velocity is written as

i(x) = U l
(

1 − xi

ci

)
+ Ur xi

ci

, (35)

here U l is the fluid velocity at the left face of the computational
ell, Ur is the fluid velocity at the right face of the computation
ell, and xi is the coordinate into the computational cell, being
ero at the left edge and ci at the right. Thus, the new coordinate,
n
i , becomes

(n)
i = xi + ui(xi) �t =

(
1 +

{
U l − Ur

ci

}
�t

)
xi + Ur �t.

(36)

ow, substituting Eq. (36) into Eq. (31) one can obtain the new
alues for α and ni. Hence,

(n)
i = ni

1 + (U l − Ur/ci) �t
(37)

(n) = α + niU
r �t

1 + (U l − Ur/ci) �t
. (38)
his process is done sequentially for all spatial directions. The
econd contribution occurs both on the left and right-hand sides
f each direction due to protrusion of the interface into neigh-
oring cells. At the left face, the interface protrudes into the

s

γ

Fig. 6. One-dimensional control volume.

eft-hand side cell if Uleft < 0. The volume shifted from the cur-
ent cell into the left-hand cell is determined by considering the
ntersection of a cell with dimensions −Uleft �t, cj and ck, where
	= j 	= k, with an interface at which α is shifted by −niUleft �t.
imilarly at the right face, the interface protrudes into the right-
and side cell if Uright > 0 and α/ni > ci, as the interface has to
ntersect with the right face of the computational cell. The vol-
me shifted from the current cell into the right-hand side cell is
etermined by considering the intersection of a cell with dimen-
ions Uright �t, cj and ck, where i 	= j 	= k, with an interface
ntersecting this cell of which α is shifted by −nici. Moving
hese volumes is done sequentially for all spatial directions.

.3. CICSAM

CICSAM by Ubbink [14] is a high-resolution differencing
cheme based on the idea of the donor–acceptor flux approxi-
ation using normalized variable diagram (NVD) of Leonard

6]. The schematic representation of a one-dimensional control
olume and its neighbors is shown in Fig. 6. The center cell
nown as the donor cell is represented by subscript D, has two
eighbors known as the acceptor cell, represented by subscript
and the upwind cell, represented by the subscript U. The flow

irection is used to determine the location of the neighbors. The
ell receiving fluid from the donor cell (D) is the acceptor cell
A) and the other neighbor to the donor cell is the upwind cell
U). The face between the donor and the acceptor cells, referred
ith a subscript f, is the face under consideration.

.3.1. Normalized variable diagram
Consider the variation of a convected scalar γ(x, y, z) along

direction normal to a control volume face as shown in Fig. 6.
he normalized variable is defined as [6]:

˜ = γ − γU

γA − γU
. (39)

ote particularly that, in terms of normalized variables, γ̃A =
and γ̃U = 0. For example, for QUICK (Quadratic Upwind

nterpolation for Convection Kinematics), on an uniform grid,
he convected face variable is

f = 1

2
(γA + γD) − 1

8
(γA − 2γD + γU), (40)
o, in terms of normalized variables,

˜f = 1

2
(1 + γ̃D) − 1

8
(1 − 2γ̃D), (41)
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Table 2
Convection schemes in their original and normalized variables

Schemes Original variables Normalized variables

First order upwind γf = γD γ̃f = γ̃D

First order downwind γ = γ γ̃ = γ̃ = 1
S
C
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γ

γ̃D when γ̃D < 0, γ̃D > 1

The Hyper-C scheme on its own is not suitable for modeling
interfacial flow, because it tends to wrinkle the interface [4].
f A f A

econd order upwind γf = 3
2 γD − 1

2 γU γ̃f = 3
2 γ̃D

entral differencing γf = 1
2 (γA + γD) γ̃f = 0.75 + 0.5(γ̃D − 0.5)

r, more conveniently,

˜f = 0.75 + 0.75(γ̃D − 0.5). (42)

t should be clear that if γf is a function of γD, γA and γU, then
he normalized variable γ̃f is only a function of γ̃D (since γ̃A = 1
nd γ̃U = 0). This is the basis of the normalized variable dia-
ram, which is a plot of the functional relationship between the
ormalized convected face value γ̃f and the normalized adjacent
onor node value γ̃D.

Eq. (42) shows that, for QUICK, the normalized variable
iagram is a straight line passing through (0.5, 0.75) with a slope
f 0.75. Table 2 shows few well-known schemes in their original
nd normalized variables. The linear NVD characteristics of
arious schemes are shown in Fig. 7.

Leonard [6] shows that linear NVD characteristics which pass
hrough the second quadrant may produce unphysical oscilla-
ions in steady one-dimensional convection. This is well known
or central differencing scheme and may also occur to some
xtent with QUICK under high-convection conditions. From
ig. 7 one can observe that these two characteristics indeed pass

hrough the second quadrant. It is also found that the charac-
eristics which pass through the fourth quadrant (i.e. below O)
re artificially diffusive. Numerical experimentation has shown
hat NVD characteristics that pass above P are oscillatory in two
imensions and characteristics that pass below P are artificially
iffusive. Thus, to avoid oscillations without being artificially
iffusive, the desired NVD characteristic should pass through O
nd P.
.3.2. Convection boundedness criteria (CBC)
Gaskell and Lau [2] suggested a convection boundedness cri-

eria for an implicit differencing scheme using the normalized

ig. 7. The convection boundedness criteria for explicit flow calculations.
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ariable as:

γ̃f = γ̃D for γ̃D < 0 or γ̃D > 1

γ̃D ≤ γ̃f ≤ 1 for 0 ≤ γ̃D ≤ 1
(43)

hich present bounds on γf for which an implicit differenc-
ng scheme always preserves the local boundedness criteria. In
ig. 7, CBC represents the shaded area with the line representing

he upwind differencing scheme. Further, Leonard [7] modified
BC for explicit flow calculations as:

γ̃f = γ̃D for γ̃D < 0 or γ̃D > 1

γ̃D ≤ γ̃f ≤ min

{
1,

γ̃D

cf

}
for 0 ≤ γ̃D ≤ 1

(44)

here cf is an arbitrary Courant number at the face f, defined
s cf = |uf δt|/δx.

Fig. 8 shows the CBC for the explicit implementation. Any
cheme that falls within the upper left triangle in Fig. 8 will be
nbounded. Any scheme that is nearer to the upper bound is
ore compressive and nearer to the line representing upwind

ifferencing scheme is more diffusive. Thus, normalized vari-
ble diagram shown in Fig. 8 can be used to evaluate the degree
f boundedness and diffusiveness of the any scheme with-
ut actually implementing them. Fig. 8 also shows that when
ourant number increases, the bounded area diminishes and
hen Courant number is greater than one all the schemes become
nbounded with an explicit implementation.

Leonard’s [7] Hyper-C differencing scheme follows the upper
ound of the CBC for explicit flow calculations, thus making
t very compressive. The normalized face value for Hyper-C
ifferencing scheme is defined as:

˜fCBC =
⎧⎨
⎩min

{
1,

γ̃D

cf

}
when 0 ≤ γ̃D ≤ 1

(45)
his is because downwinding tends to compress any gradient

ig. 8. The convection boundedness criteria for explicit flow calculations.
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Fig. 9. Building blocks of the CICSAM scheme. (a) T

nto a step profile, even if the orientation of the interface is
lmost tangential to the flow direction. This problem is countered
y switching from the controlled downwinding formulation to
pwind differencing under certain conditions. Hirt and Nichols’
4] VOF method determines the slope of the interface and
witches to upwind differencing if the smallest angle between
he interface and the face of the control volume is more than
5◦. Numerical experimentation has shown that it is necessary
o switch to another high-resolution (HR) scheme which will
reserve the interface shape better. The CICSAM scheme of
bbink [14] switches to ULTIMATE-QUICKEST (UQ) [7],

he one-dimensional explicit bounded version of QUICK. The
athematical formulation of UQ is given as (Fig. 9):

˜fUQ =
⎧⎨
⎩min

{
8cf γ̃D + (1 − cf )(6γ̃D + 3)

8
, γ̃fCBC

}
when0

γ̃D whenγ̃

The CICSAM scheme is formulated in a way that it switches
etween the more compressive Hyper-C scheme and less com-
ressive UQ scheme using a scaling factor 0 ≤ σf ≤ 1 (Fig. 10)
nd the normalized face value of the color function is calculated
sing the following definition:

˜f = σf γ̃fCBC + (1 − σf )γ̃fUQ , (47)

here σf is the scaling factor calculated based on the cosine of
he angle θf between the vector normal to the interface (∇γ)D
nd the vector df , which connects the donor and acceptor cells.
he equations for the angle and the scaling factor are:

f = arccos

∣∣∣∣ (∇γ)D · df

|(∇γ)D||df |
∣∣∣∣ (48)

f = min

{
cos(2θf ) + 1

2
, 1

}
(49)

ig. 10 shows the NVD for CICSAM scheme. The value σf = 1
s used when the interface orientation is normal to the direc-
ion of motion and σf = 0 is used when interface orientation

s tangential to the direction of motion. Further, the extension
f the above scheme to multi-dimensions results in the occur-
ence of non-physical values of the volume fraction as the face
alues are predicted in isolation of each other. To avoid such

c
i
c
d

per bound of the CBC; (b) ULTIMATE-QUICKEST.

D ≤ 1

0, γ̃D > 1
(46)

on-physical values, a detailed predictor–corrector solution pro-
edure is explained in Ref. [14].

.4. Inter-gamma differencing scheme

Rusche [13] presents a scheme proposed by Jasak and Weller
5], wherein the necessary compression of the interface is
chieved by introducing an extra, artificial compression term
nto the VOF Eq. (15) instead of just using a compressive dif-
erencing scheme:

∂γ

∂t
+ ∇ · (Uγ) + ∇ · (Urγ(1 − γ)) = 0, (50)

here Ur is a velocity field suitable to compress the interface.
his artificial term is active only in the interface region due to the

erm γ(1 − γ). The solution to this equation is bounded between
ero and one using the inter-gamma differencing scheme which
s explained later in the same section. Eq. (50) is re-written in
he following form:

∂γ

∂t
+ ∇ · (φ[γ]f (φ,S)) + ∇ · (φrb [γ]f (φrb

,S)) = 0, (51)

here φ = S · Uf is the volumetric flux and φrb =
1 − γ)f (−φr,S)φ

r. The following formulation for compression
elocity Ur is used:

r = Kcn
∗ max

{ |n∗φ|
|S|2

}
(52)

hereKc is an adjustable coefficient (preferredKc = 1.5) which
etermines the magnitude of the compression and n∗ is the unit
ormal vector of the interface evaluated from the smoothed indi-

ator function. In Eq. (52), the maximum velocity magnitude
s multiplied by the normal vector of the interface to achieve
ompression perpendicular to the interface. The solution to the
iscretized form of Eq. (51) is obtained by using an inter-gamma
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Fig. 10. NVD for CICSAM scheme.

ifferencing scheme by Jasak and Weller [5]. The inter-gamma
ifferencing scheme is also based on the donor–acceptor formu-
ation using Leonard’s [6] normalized variable diagram. The
ariable and control volume arrangement (Fig. 6) is similar
o ones used in CICSAM description. The mathematical for-
ulation of the inter-gamma differencing scheme is described

s:

for γ̃D < 0, γ̃f > 1 ⇒ γ̃f = γ̃D to obey the NVD criterion.
for 1

2 < γ̃D < 1 ⇒ γ̃f = 1 to ensure the compressive behav-
ior of the scheme.
for 0 < γ̃D < 1

2 ⇒ γ̃f = −2γ̃2
D + 3γ̃D to ensure a smooth

change from upwind to downwind differencing

Fig. 11 shows the NVD for the inter-gamma differencing
cheme. The shaded region in Fig. 11 shows the boundedness
riterion for convection differencing schemes as described by
eonard [6] and Gaskell and Lau [2].

.4.1. Courant number limit
The compressiveness of CICSAM and inter-gamma schemes

s obtained by using controlled downwinding of the fluxes. Con-
rolled downwinding schemes have compressive characteristics
hich depend on the CFL number, and therefore require small

ime steps to achieve sharp interfaces.
When simple upwind or downwind differencing schemes are

elected for discretization of the convection term, the fluxes on
he faces of the control volume guarantee that the central coeffi-
ient will not be zero. The requirement on the Courant number

or central differencing comes from the condition of the diagonal
qualness of the matrix.

In the case of inter-gamma and CICSAM differencing
chemes the situation is a bit more complicated. The choice

t
c
w
d

Fig. 11. Inter-gamma scheme in NVD.

etween upwind and downwind differencing is not made just by
hecking the direction of the flux. The choice is actually made
ased both on the flux direction and local shape of the solution.
his means that the continuity criterion is not enough to guar-
ntee the existence of the central coefficient. It often happens in
ne-dimension that one of the faces of the control volume uses
pwind and the other uses downwind differencing. The result
s that the central coefficient from the convection discretization
omes out to be zero and the sum of the neighboring coeffi-
ients is twice as much as in the case of central differencing.
hus resulting in the Courant number limit of Co < 1/2. In
ulti-dimensions the situation gets even more severe and it is

sually necessary to keep the Courant number to be less than Co
1/3.
The low Courant number constraint posed by the compressive

chemes result in high computational costs. One way to over
ome this problem is by using so called subcycles to solve the
OF equation. For a given Courant number, the flow equations
re solved initially and later the VOF equation is fractionally
pdated n times, where n represents the number of subcycles
re-defined in the code. This provides the flexibility to use larger
ourant numbers for the whole simulation as such without losing

he accuracy of the VOF scheme.

. Test cases

To evaluate the performance of the implemented VOF
chemes, a number of standard test cases were setup. These
est cases can be generally classified into theoretical ones, where

omparisons are made against analytical solutions and real cases,
here comparisons are made against theoretical/experimental
ata.
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Table 3
Table showing the fractional error for two unidirectional velocity fields

Velocity Scalar field FCT L-PLIC CICSAM I-gamma

(1,0) Hollow square 8.3217e–17 3.3500e–02 5.6292e–04 9.7000e–03
Hollow circle 9.5261e–17 2.7100e–02 3.0100e–02 1.2300e–02

(

u
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w
e

ε

w
c
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d
o

F
w
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3

i
t
e
t

3

a

(
(

s
m
i
a
a

2,1) Hollow square 2.8316e–16
Hollow circle 3.0200e–02

Error estimation: The fractional error resulting from the sim-
lations is calculated using:

=

∑
i,j

‖γn
i,j − γe

i,j‖
∑
i,j

γo
i,j

, (53)

here γn is the calculated solution after n time steps, γe is the
xact solution after n time steps and γo is the initial solution.

The percentage error for each is scheme is estimated using:

= 100

N∑
i=1

γn
i −

N∑
i=1

γo
i

N∑
i=1

γo
i

(54)

here N is the total number of cells in the domain, γn is the
olor function at the new time step and γo is the color function

t the initial time step. Eq. (54) gives the percentage addition or
eletion of mass by a scheme, i.e. it represents the diffusiveness
f a given scheme.

ig. 12. Figure showing the initial configuration of the solid-body rotation test
ith the value of the color function is one inside the slotted circle and zero
utside.
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8.9300e–02 2.7000e–02 7.1830e–01
1.4900e–02 7.4500e–02 7.1300e–01

.1. Advection tests (2D)

In this section, various shapes of color function are advected
n chosen analytical velocity fields completely uncoupled from
he solutions of the momentum equations. The two fluids consid-
red are inviscid and of constant density. This allows to compare
he methods without the effect of fluid behavior.

.1.1. Translation test
In this case an oblique unidirectional velocity field is used to

dvect the following shapes of the color function:

1) a hollow square aligned with the co-ordinate axes;
2) a hollow circle.

The computational domain is of size 1 m × 1 m with mesh
ize 200 × 200. The exterior extent of the shapes initially is 40
esh cells and the distance between the outer and inner interface

s 10 mesh cells. A Courant number of 0.25 is used and the
dvection proceeds for 500 time steps. Two velocity fields (1,0)
nd (2,1) are used to advect the scalar fields.

All the four methods give consistently good results for the
ase when the advection is aligned with a co-ordinate direction.
n the case when the advection is inclined, the sharp corners of
he square shape are rounded off by all the schemes. Table 3
hows the fractional errors for two advecting velocity fields and
our methods. There is no consistent pattern to the errors. In
eneral, FCT has the lowest error for both the velocity fields,
ompared to other cases.

.1.2. Rotation of a slotted circle
Zalesak’s [18] solid-body rotation of a slotted circle poses a

ough test with regard to the advection schemes. In this case, a
lotted circle is rotated through one or more revolutions around
n external point. The computational domain is a square with
imensions 4 m times 4 m with uniform mesh of size 200 × 200.
he diameter of the slotted circle is 50 mesh cells with the initial
ircle center at (2.0, 2.75) and the slot width is six mesh cells.
he velocity field given by:

U = −�(y − y0),

V = �(x − x0),
(55)

here (x0, y0) = (2.0, 2.0) is the center of rotation and � is the

ngular velocity of 0.5 rad/s. Initially, the Courant number is
.25 and one rotation corresponds to 2524 time steps. The ini-
ial conditions are shown in Fig. 12. Results after one rotation
re shown in Fig. 13 for each of the four methods and the frac-
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r solid-body rotation test after one rotation.
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Fig. 13. Figures showing the results fo

ional and percentage errors are shown in Table 4. Fig. 13(d)
hows that the inter-gamma scheme results in wrinkling of the
nterface after one rotation. In contrast, CICSAM, Lagrangian
iecewise linear interface construction (L-PLIC) and FCT gives
harp acceptable interface shapes, although the sharp corners at
oth ends of the slot are rounded off. The relative fractional error
or the schemes is of the same magnitude.

.1.3. Shearing flow test
The unidirectional velocity and rotational velocity fields do

ot involve any topological changes in the solution thus not
roviding a complete assessment of the integrity of the vol-
me tracking methods. In realistic problems the situation is far

ore complicated, with stretching, shearing, fluid merging and

reak-up all possible in a flow. The key element missing from
ranslation and rotation tests is the presence of fluid shear. In
his section, shear is introduced into the velocity field. This test

able 4
able indicating the fractional error for solid-body rotation test after one rotation

rror FCT PLIC CICSAM I-gamma

ractional 0.0810 0.1761 0.0749 0.1218 Fig. 14. Figure showing the initial configuration of the shearing flow test with
the value of the color function is one inside the circle and zero outside.
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Fig. 15. Figures showing the result of the shearing flow test using FCT for N = 2000 time steps. (a) The result after 1000 time steps and (b) the results after 2000
time steps.

Fig. 16. Figures showing the result of the shearing flow test using L-PLIC for N = 2000 time steps. (a) The result after 1000 time steps and (b) The results after
2000 time steps.

Fig. 17. Figures showing the result of the shearing flow test using CICSAM for N = 2000 time steps. (a) The result after 1000 time steps and (b) the results after
2000 time steps.
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Fig. 19. The computational domain has dimensions of 0.1 m in
length and 0.065 m in depth. Initially, the surface of the qui-
escent fluid is defined by one half of a cosine wave with an
amplitude of 0.005 m. The bottom and the sides of the computa-
ig. 18. Figures showing the result of the shearing flow test using inter-gamm
esults after 2000 time steps.

s performed in both two and three dimensions: The following
wo-dimensional velocity field is chosen:

U = cos(x) sin(y),

V = − sin(x) cos(y),
(56)

ith x, yε[0, π]. The mesh is of size 100 × 100 with the initial
ondition a circle of radius π/5 with its center at [π/2, π/3]. The
imulation is run for N time steps before reversing the sign of
he velocity field and running for an additional N time steps. A
erfect advection scheme would return the initial shape. Value of
in the range 500 ≤ N ≤ 2000 are tested. A time step of �t =

/400 which corresponds to a Courant number of approximately
.25 is used.

Fig. 14 shows the initial configuration for the shearing flow
est with the color function equal to one inside the circle and zero
utside. Three cases with N =500, 1000 and 2000 were inves-
igated. The simulations were run for N/2 time steps before
hanging the signs of the velocity field for the remaining N/2
ime stamps. Figs. 15–18 shows the results at the two stages dur-
ng the simulations for N = 2000 using FCT, L-PLIC, CICSAM
nd inter-gamma schemes respectively. Qualitative comparison
hows that CICSAM and L-PLIC schemes clearly perform the
est, maintaining a sharp interface and also retaining the initial
onfiguration after 2000 time steps. FCT forms small wiggles at
= 1000 (Fig. 15(a)), but does seem to retain the initial con-

guration after 2000 time steps. Inter-gamma scheme clearly

erforms the worse compared to other schemes. Table 5 shows
he progression of fractional errors at three different time steps.
he errors for the inter-gamma schemes are clearly higher than
ther schemes.

able 5
able indicating the fractional error for shearing flow test

ime steps FCT PLIC CICSAM I-gamma

00 0.0258 0.0210 0.0262 0.0193
000 0.0255 0.0249 0.0269 0.0242
000 0.0540 0.0286 0.0286 0.0302

F
f
a

me for N = 2000 time steps. (a) The result after 1000 time steps and (b) the

.2. Realistic flow cases

In the following sections tests are performed using a realistic
ow field wherein the advection of color function is dynamically
oupled to the solution of the momentum equations. The realistic
ow field includes the degree of complexities encountered in
ractical situations which is hard to ensure with an analytical
elocity field.

.3. Sloshing test

The sloshing of a liquid wave with low amplitude under the
nfluence of gravity is used as a test case to evaluate the inter-
ace capturing methodology by Raad et al. [11]. The same setup
s used here to evaluate the performance of implemented VOF

ethods. The two-dimensional setup considered is shown in
ig. 19. Figure showing the 2d tank approximately three fourth filled with water
orming an interface with air. The interface is a cosine wave of low amplitude
s the initial condition.
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Fig. 20. Figures comparing the calculated and the theoretical position of the interface at the left wall as a function of time for six periods of oscillation.

Fig. 21. Figures showing percentage error for each scheme as a function of time.
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Fig. 22. Figures showing the progression of Ra

ional domain are treated as walls and at the top a fixed pressure

oundary condition is applied. Both the fluids are considered
nviscid with densities ρ1 = 1000 kg/m3and ρ2 = 1 kg/m3. The
omain is discretized with 160 cells in the horizontal direction
nd 104 cells in vertical direction.

T

P

Fig. 23. Figures showing the progression of Rayleigh–
–Taylor instability in time using FCT scheme.

The fluid begins to slosh solely under the influence of gravity.

he theoretical sloshing of the first mode is (Raad et al. [11]):

= 2π√
gk tan h(kh)

= 0.3737 s (57)

Taylor instability in time using L-PLIC scheme.
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Fig. 24. Figures showing the progression of Rayle

here k is the wave number and h the average fluid depth. Fig. 20
hows the calculated and the theoretical position of the interface
t the left boundary against time for the first six periods of oscil-

ation. It is observed that except for FCT, other three schemes
losely follow the theoretical calculation. FCT seems to fol-
ow the trend initially, but with time it deviates considerably

o
a
m

Fig. 25. Figures showing the progression of Rayleigh–Ta
aylor instability in time using CICSAM scheme.

rom the theoretical results. This can be explained by the loss of
ass in time as shown in Fig. 21(a). Further Fig. 21(d) shows

hat the inter-gamma compressive scheme is far superior to all

ther schemes in terms of mass conservation. Lagrangian PLIC
nd CICSAM also perform well considering the maximum error
agnitude being 0.02 and 2.5e −4% respectively.

ylor instability in time using inter-gamma scheme.
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Table 6
Table showing the percentage error of Rayleigh–Taylor instability simulation at
various time steps

Time FCT PLIC CICSAM I-gamma

0.2 s −0.0151 −1.225e–5 −8.21e–4 0.0
0.4 s −0.150 −6.370e–5 −0.0015 0.0
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.6 s −0.6876 −8.946e–4 −0.0021 0.0

.8 s −1.5167 −0.044 −0.0027 0.0

.95 s −2.6791 −0.0174 −0.003 0.0

.4. Rayleigh–Taylor instability

The next test case chosen is the Rayleigh–Taylor instability
roblem (Refs. [12] and [8]). In this case, a high density liq-
id is placed over a low density liquid in a rectangular domain
f dimension 1 m × 4 m with a mesh resolution of 64 × 256.
he top half of the domain is filled with fluid of density
1 = 1.225 kg/m3 (γ = 1) and the bottom half is filled with a
uid of density ρ2 = 0.1694 kg/m3 (γ = 0). The viscosity of
oth the fluids is taken as 3.13 × 10−3 kg/m/s. Initially a per-
urbation given by the function y = 0.05 cos(2πx) is applied at
he interface. This results in a density driven flow and errors
n the γ field will lead to errors in the momentum equations
ia Eq. (11). No-slip boundary conditions are used on all the
oundaries. Keeping in mind the Courant number limitations
f CICSAM and inter-gamma differencing schemes, a constant
ime step of 2e −4 is used which approximately corresponds to
ourant number of 6e −2.

Figs. 22–25 show progression of the Rayleigh–Taylor insta-
ility using FCT, Lagrangian PLIC, CICSAM and inter-gamma
chemes at t = 0, 0.2, 0.4, 0.6, 0.8 and 0.95 s. A qualitative
omparison of the results from different schemes shows sim-
lar patterns up to 0.4 s. At 0.6 s, FCT shows the formation of
etsam below the peak on both the sides close to the wall and
lso close to the filament connecting to the blob at the center.
he formation of the blob at the center is seen to be rounded off

n the case of FCT compared to other schemes. In time, the inter-
ace at the center takes the shape of an inverted mushroom, with
maller secondary filaments forming at the inner circumference
f this instability. The formation of these secondary instabili-
ies are more pronounced (sharp) with inter-gamma, CICSAM
nd PLIC schemes compared to more diffused solution of FCT.
able 6 shows the percentage error of the schemes at different

ime steps. It can be clearly seen that FCT is the most diffu-
ive scheme with a mass loss corresponding to 2.6% relative
o PLIC and CICSAM schemes, which explains the diffusive
olution obtained by FCT. inter-gamma scheme is superior with
00% mass conservation.

. Summary of methods

The FCT method is a simple scheme to implement. It uses a
ombination of a lower order stable scheme and a higher order

onotonic scheme to calculate anti-diffusive fluxes. The fluxes

re limited using limiters calculated from the possible theoretical
xtrema in the solution. Direction splitting is used to extend the
cheme into multi-dimensions. The results of the simple advec-

d
l
(
t

ngineering Journal 141 (2008) 204–221

ion tests show that the performance of FCT is reasonably good,
ut, the results of more practical tests, i.e. sloshing of a liquid
ave and the Rayleigh–Taylor instability problem indicate that
CT results in a more diffusive interface. This is attributed to

he loss of mass, indicated by the percentage error for each test
ase. Hence, for many practical cases FCT is not mass conserv-
ng. This is because the small round-off errors accumulate and
ffect the boundedness of the solution after a few hundred time
teps. Thus, after every time step, negative color function val-
es are set to zero and any value greater than one is set to unity.
lso, the method being direction split results in the method being

estrained to only structured meshes.
The Lagrangian-PLIC scheme uses a straight line in 2d, or

lane in 3d, to reconstruct the interface in a cell and the fluxes
eaving the cell faces are calculated geometrically. The method
s extended to multi-dimensions using direction-split technique.
he results of both simple advection tests and the real test cases
how that the scheme is fairly accurate keeping a sharp interface
y definition. The accuracy criterion for all test cases shows
ery small percentage of mass loss, indicating that the scheme
s mass conservative. The scheme is direction split, which limits
ts usage to structured meshes.

The CICSAM scheme is a high-resolution scheme based on
he donor–acceptor flux approximation using the normalized
ariable diagram of Leonard [6]. The CICSAM scheme is for-
ulated in a way that it switches between the more compressive
yper-C scheme and less compressive Ultimate-QUICKEST

cheme using a scaling factor calculated based on the angle
ade by the normal to interface to the vector connecting the

onor and acceptor cells. The results of the tests indicate that
he scheme is very accurate keeping the interface sharp. The
cheme, as the name indicates, is derived for arbitrary meshes,
hus providing flexibility in-terms of boundary fitted grid usage.
he limitations of the scheme is that the boundedness of the
cheme is dependent on the local Courant number, requiring
ery small time steps to keep the interface sharp. The error
or different test cases indicates that the method is fairly mass
onservative.

The inter-gamma scheme uses an extra artificial compression
erm into the VOF Eq. (15) instead of merely using a com-
ressive differencing scheme. The differencing scheme is also
ased on Leonard’s [6] normalized variable diagram. The simple
dvection results indicate that the scheme is very dependent on
FL numbers resulting in the usage of very small time steps for
eeping the interface sharp. The practical test cases using low
FL numbers show very good resolution of the interface and

he percentage error for all the test cases show zero addition or
eletion of mass indicating that the method is completely mass
onservative.

. Conclusions

This paper discusses four volume of fluid (VOF) schemes in

etail, showing the derivation, implementation, advantages and
imitations. The schemes presented are: flux-corrected transport
Boris et al. [1]), Lagrangian piecewise linear interface construc-
ion (van Wachem and Schouten [16]), Compressive interface
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apturing scheme for arbitrary meshes (Ubbink [14]) and inter-
amma scheme (Jasak and Weller [5]). The performance of the
our schemes is tested initially using simple analytical velocity
elds and further with two practical test cases of sloshing of a

iquid wave and the Rayleigh–Taylor instability problem.
The FCT method works well for an analytical steady veloc-

ty field, but is non-mass conservative for practical flow cases.
ecause the method employs direction splitting for higher geo-
etric dimensions, the method is restricted to structured meshes.
he Lagrangian-PLIC scheme is found to be fairly accurate
nd mass conservative for all flow test cases, but can only be
mployed for structured meshes. It can be employed with quite
arge time steps, as long as CFL < 1. Both the compressive
chemes CICSAM and inter-gamma are found to be accurate
or all flow cases, in conserving mass and keeping the inter-
ace very sharp. CICSAM and inter-gamma are flexible in terms
f arbitrary mesh usage, as they do not require direction split-
ing for higher geometric dimensions. However, the schemes
re very sensitive to the local CFL number, as they require
ery small time steps, CFL < 0.01, for keeping a sharp inter-
ace.
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